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Abstract. The mifare Classic is a contactless smart card that is used
extensively in access control for office buildings, payment systems for
public transport, and other applications. We reverse engineered the se-
curity mechanisms of this chip: the authentication protocol, the symmet-
ric cipher, and the initialization mechanism. We describe several security
vulnerabilities in these mechanisms and exploit these vulnerabilities with
two attacks; both are capable of retrieving the secret key from a genuine
reader. The most serious one recovers the secret key from just one or
two authentication attempts with a genuine reader in less than a second
on ordinary hardware and without any pre-computation. Using the same
methods, an attacker can also eavesdrop the communication between a
tag and a reader, and decrypt the whole trace, even if it involves multiple
authentications. This enables an attacker to clone a card or to restore a
real card to a previous state.

1 Introduction

Over the last few years, more and more systems adopted RFID and contactless
smart cards as replacement for bar codes, magnetic stripe cards and paper tickets
for a wide variety of applications. Contactless smart cards consist of a small piece
of memory that can be accessed wirelessly, but unlike RFID tags, they also have
some computing capabilities. Most of these cards implement some sort of simple
symmetric-key cryptography, making them suitable for applications that require
access control to the smart card’s memory.

A number of large-scale applications make use of contactless smart cards. For
example, they are used for payment in several public transport systems like the
Oyster card1 in London and the OV-Chipkaart2 in The Netherlands, among oth-
ers. Many countries have already incorporated a contactless smart card in their
electronic passports [HHJ+06]. Many office buildings and even secured facilities
like airports and military bases use contactless smart cards for access control.

There is a huge variety of cards on the market. They differ in size, casing, mem-
ory, and computing power. They also differ in the security features they provide.
1 http://oyster.tfl.gov.uk
2 http://www.ov-chipkaart.nl
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A well known and widely used system is mifare. This is a product family from
NXP Semiconductors (formerly Philips Semiconductors), currently consisting of
four different types of cards: Ultralight, Classic, DESFire and SmartMX. Ac-
cording to NXP, more than 1 billion mifare cards have been sold and there are
about 200 million mifare Classic tags in use around the world, covering about
85% of the contactless smart card market. Throughout this paper we focus on
this tag. mifare Classic tags provide mutual authentication and data secrecy
by means of the so called CRYPTO1 cipher. This is a stream cipher using a 48
bit secret key. It is proprietary of NXP and its design is kept secret.

Our Contribution. This paper describes the reverse engineering of the mifare

Classic chip. We do so by recording and studying traces from communication
between tags and readers. We recover the encryption algorithm and the authen-
tication protocol. It also unveils several vulnerabilities in the design and imple-
mentation of the mifare Classic chip. This results in two attacks that recover a
secret key from a mifare reader.

The first attack uses a vulnerability in the way the cipher is initialized to split
the 48 bit search space in a k bit online search space and 48−k bit offline search
space. To mount this attack, the attacker needs to gather a modest amount of
data from a genuine reader. Once this data has been gathered, recovering the
secret key is as efficient as a lookup operation on a table. Therefore, it is much
more efficient than an exhaustive search over the whole 48 bit key space.

The second and more efficient attack uses a cryptographic weakness of the
CRYPTO1 cipher allowing us to recover the internal state of the cipher given a
small part of the keystream. To mount this attack, one only needs one or two
partial authentication from a reader to recover the secret key within one second,
on ordinary hardware. This attack does not require any pre-computation and
only needs about 8 MB of memory to be executed.

When an attacker eavesdrops communication between a tag and a reader, the
same methods enable us to recover all keys used in the trace and decrypt it. This
gives us sufficient information to read a card, clone a card, or restore a card to a
previous state. We have successfully executed these attacks against real systems,
including the London Oyster Card and the Dutch OV-Chipkaart.

Related Work. De Koning Gans, Hoepman and Garcia [KHG08] proposed an
attack that exploits the malleability of the CRYPTO1 cipher to read partial
information from a mifare Classic tag. Our paper differs from [KHG08] since
the attacks proposed here focus on the reader.

Nohl and Plötz have partly reverse engineered the mifare Classic tag earlier
[NP07], although not all details of their findings have been made public. Their
research takes a very different, hardware oriented, approach. They recovered the
algorithm, partially, by slicing the chip and taking pictures with a microscope.
They then analyzed these pictures, looking for specific gates and connections.

Their presentation has been of great stimulus in our discovery process. Our
approach, however, is radically different as our reverse engineering is based on
the study of the communication behavior of tags and readers. Furthermore,
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the recovery of the authentication protocol, the cryptanalysis, and the attacks
presented here are totally novel.

Overview. In Section 2 we briefly describe the hardware used to analyze the
mifare Classic. Section 3 summarizes the logical structure of the mifare Classic.
Section 4 then describes the way a tag and a reader authenticate each other. It also
details how we reverse engineered this authentication protocol and points out a
weakness in this protocol enabling an attacker to discover 64 bits of the keystream.
Section 5 describes how we recovered the CRYPTO1 cipher by interacting with
genuine readers and tags. Section 6 then describes four concrete weaknesses in the
authentication protocol and the cipher and how they can be exploited. Section 7
describes how this leads to concrete attacks against a reader. Section 8 shows that
these attacks are also applicable if the reader authenticates for more than a single
block of memory. Section 9 describes consequences and conclusions.

2 Hardware Setup

For this experiment we designed and built a custom device for tag emulation
and eavesdropping. This device, called Ghost, is able to communicate with a
contactless smart card reader, emulating a tag, and eavesdrop communication
between a genuine tag and reader. The Ghost is completely programmable and
is able to send arbitrary messages. We can also set the uid of the Ghost which is
not possible with manufacturer tags. The hardware cost of the Ghost is approxi-
mately e40. We also used a ProxMark3, a generic device for communication with
RFID tags and readers, and programmed it to handle the ISO14443-A standard.
As it provides similar functionality to the Ghost, we do not make a distinction
between these devices in the remainder of the paper.

On the reader side we used an OpenPCD reader4 and an Omnikey reader5.
These readers contain a mifare chip implementing the CRYPTO1 cipher and
are fully programmable.

Notation. In mifare, there is a difference between the way bytes are repre-
sented in most tools and the way they are being sent over the air. The former,
consistent with the ISO14443 standard, writes the most significant bit of the
byte on the left, while the latter writes the least significant bit on the left. This
means that most tools represent the value 0x0a0b0c as 0x50d030 while it is sent
as 0x0a0b0c on the air. Throughout this paper we adopt the latter convention
(with the most significant bit left, since that has nicer mathematical proper-
ties) everywhere except when we show traces so that the command codes are
consistent with the ISO standard.

Finally, we number bits (in keys, nonces, and cipher states) from left to right,
starting with 0. For data that is transmitted, this means that lower numbered
bits are transmitted before higher numbered bits.
3 http://cq.cx/proxmark3.pl,http://www.proxmark.org
4 http://www.openpcd.org
5 http://omnikey.aaitg.com

http://cq.cx/proxmark3.pl, http://www.proxmark.org
http://www.openpcd.org
http://omnikey.aaitg.com
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3 Logical Structure of the MIFARE Classic Tags

The mifare Classic tag is essentially an eeprom memory chip with secure com-
munication provisions. Basic operations like read, write, increment and decre-
ment can be performed on this memory. The memory of the tag is divided into

Fig. 1. Logical structure

sectors. Each sector is further divided into
blocks of 16 bytes each. The last block of each
sector is called the sector trailer and stores
two secret keys and access conditions corre-
sponding to that sector.

To perform an operation on a specific
block, the reader must first authenticate for
the sector containing that block. The access
conditions of that sector determine whether
key A or B must be used. Figure 1 shows a
schematic of the logical structure of the mem-
ory of a mifare Classic tag.

4 Authentication Protocol

When the tag enters the electromagnetic field of the reader and powers up, it
immediately starts the anti-collision protocol by sending its uid. The reader then
selects this tag as specified in ISO14443-A [ISO01].

According to the manufacturer’s documentation, the reader then sends an
authentication request for a specific block. Next, the tag picks a challenge nonce
nT and sends it to the reader in the clear. Then the reader sends its own challenge
nonce nR together with the answer aR to the challenge of the tag. The tag finishes
authentication by replying aT to the challenge of the reader. Starting with nR,
all communication is encrypted. This means that nR, aR, and aT are XOR-ed
with the keystream ks1, ks2, ks3. Figure 2 shows an example.

Step Sender Hex Abstract
01 Reader 26 req type A
02 Tag 04 00 answer req
03 Reader 93 20 select
04 Tag c2 a8 2d f4 b3 uid,bcc
05 Reader 93 70 c2 a8 2d f4 b3 ba a3 select(uid)
06 Tag 08 b6 dd mifare 1k
07 Reader 60 30 76 4a auth(block 30)
08 Tag 42 97 c0 a4 nT

09 Reader 7d db 9b 83 67 eb 5d 83 nR ⊕ ks1, aR ⊕ ks2
10 Tag 8b d4 10 08 aT ⊕ ks3

Fig. 2. Authentication Trace
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We started experimenting with the Ghost and an OpenPCD reader which we
control. The pseudo-random generator in the tag is fully deterministic. Therefore
the nonce it generates only depends on the time between power up and the start
of communication [NP07]. Since we control the reader, we control this timing and
therefore can get the same tag nonce every time. With the Ghost operating as a
tag, we can choose custom challenge nonces and uids. Furthermore, by fixing nT

(and uid) and repeatedly authenticating, we found out that the reader produces
the same sequence of nonces every time it is restarted. Unlike in the tag, the
state of the pseudo-random generator in the reader does not update every clock
tick but with every invocation.

The pseudo-random generator in the tag used to generate nT is a 16 bit LFSR
with generating polynomial x16+x14+x13+x11+1. Since nonces are 32 bits long
and the LFSR has a 16 bit state, the first half of nT determines the second half.
This means that given a 32 bit value, we can tell if it is a proper tag nonce, i.e.,
if it could be generated by this LFSR. To be precise, a 32 bit value n0n1 . . . n31
is a proper tag nonce if and only if nk ⊕ nk+2 ⊕ nk+3 ⊕ nk+5 ⊕ nk+16 = 0 for all
k ∈ {0, 1, . . . , 15}. Remark that the Ghost can send arbitrary values as nonces
and is not restricted to sending proper tag nonces.

Experimenting with authentication sessions with various uids and tag nonces,
we noticed that if nT ⊕ uid remains constant, then the ciphertext of the en-
crypted reader nonce also remains constant. The answers aT and aR, however,
have different ciphertexts in the two sessions. For example, in Figure 2 the
uid is 0xc2a82df4 and nT is 0x4297c0a4, therefore nT ⊕ uid is 0x803fed50.
If we instead take uid to be 0x1dfbe033 and nT to be 0x9dc40d63, then nt ⊕
uid still equals 0x803fed50. In both cases, the encrypted reader nonce nR ⊕
ks1 is 0x7ddb9b83. However, in Figure 2, aR ⊕ ks2 is 0x67eb5d83 and aT ⊕
ks3 is 0x8bd41008, while with the modified uid and nT they are, respectively,
0x4295c446 and 0xeb3ef7da.

This suggests that the keystream in both runs is the same and it also suggests
that aT and aR depend on nT . By XOR-ing both answers aR ⊕ ks2 and a′R ⊕ ks2
together we get aR ⊕a′R. We noticed that aR ⊕a′R is a proper tag nonce. Because
the set of proper tag nonces is a linear subspace of F

32
2 , where F2 is the field of

two elements, the XOR of proper tag nonces is also a proper tag nonce. This
suggests that aR and a′R are also proper tag nonces.

Given a 32 bit nonce nT generated by the LFSR, one can compute the suc-
cessor suc(nT ) consisting of the next 32 generated bits. At this stage we could
verify that aR ⊕ a′R = suc2(nT ⊕ n′T ) = suc2(nT )⊕ suc2(n′T ) which suggests that
aR = suc2(nT ) and a′R = suc2(n′T ). Similarly for the answer from the tag we
could verify that aT = suc3(nT ) and a′T = suc3(n′T ).

Summarizing, the authentication protocol can be described as follows; see
Figure 3. After the nonce nT is sent by the tag, both tag and reader initialize the
cipher with the shared key K, the uid, and the nonce nT . The reader then picks its
challenge nonce nR and sends it encrypted with the first part of the keystream
ks1. Then it updates the cipher state with nR. The reader authenticates by
sending suc2(nT ) encrypted, i.e., suc2(nT ) ⊕ ks2. At this point the tag is able
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Tag Reader
0 anti-c(uid)−−−−−−−−−−−−−−−−−−−−→
1 auth(block)←−−−−−−−−−−−−−−−−−−−−
2 picks nT

3 nT−−−−−−−−−−−−−−−−−−−−→
4 ks1 ← cipher(K, uid, nT ) ks1 ← cipher(K, uid, nT )
5 picks nR

6 ks2, . . .← cipher(nR)
7 nR ⊕ ks1, suc2(nT )⊕ ks2←−−−−−−−−−−−−−−−−−−−−
8 ks2, . . .← cipher(nR)
9 suc3(nT )⊕ ks3−−−−−−−−−−−−−−−−−−−−→

Fig. 3. Authentication Protocol

to update the cipher state in the same way and verify the authenticity of the
reader. The remainder of the keystream ks3, ks4 . . . is now determined and from
now on all communication is encrypted, i.e., XOR-ed with the keystream. The
tag finishes the authentication protocol by sending suc3(nT ) ⊕ ks3. Now the
reader is able to verify the authenticity of the tag.

4.1 Known Plaintext

From the description of the authentication protocol it is easy to see that parts
of the keystream can be recovered. Having seen nT and suc2(nT ) ⊕ ks2, one can
recover ks2 (i.e., 32 bits of keystream) by computing suc2(nT ) and XOR-ing.

Moreover, experiments show that if in step 9 of the authentication protocol
the tag does not send anything, then most readers will time out and send a
halt command. Since communication is encrypted it actually sends halt ⊕ ks3.
Knowing the byte code of the halt command (0x500057cd [ISO01]) we recover
ks3.

Some readers do not send a halt command but instead continue as if au-
thentication succeeded. This typically means that it sends an encrypted read
command. As the byte code of the read command is also known [KHG08], this
also enables us to recover ks3 by guessing the block number.

It is important to note that one can obtain such an authentication session (or
rather, a partial authentication session, as the Ghost never authenticates itself)
from a reader (and hence ks2, ks3) without knowing the secret key and, in fact,
without using a tag.

If an attacker does have access to both a tag and a reader and can eavesdrop
a successful (complete) authentication session, then both ks2 and ks3 can be
recovered from the answers suc2(nT )⊕ ks2 and suc3(nT )⊕ ks3 of the tag and the
reader. This works even if the reader does not send halt or read after timeout.

5 CRYPTO1 Cipher

The core of the CRYPTO1 cipher is a 48-bit linear feedback shift register (LFSR)
with generating polynomial g(x) = x48 + x43 + x39 + x38 + x36 + x34 + x33 +
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Fig. 4. The Hitag2 Cipher

x31 + x29 + x24 + x23 + x21 + x19 + x13 + x9 + x7 + x6 + x5 + 1. This polynomial
was given in [NESP08]; note it can also be deduced from the relation between
uid and the secret key described in [NP07]. At every clock tick the register is
shifted one bit to the left. The leftmost bit is discarded and the feedback bit
is computed according to g(x). Additionally, the LFSR has an input bit that is
XOR-ed with the feedback bit and then fed into the LFSR on the right. To be
precise, if the state of the LFSR at time k is rkrk+1 . . . rk+47 and the input bit
is i, then its state at time k + 1 is rk+1rk+2 . . . rk+48, where

rk+48 = rk ⊕ rk+5 ⊕ rk+9 ⊕ rk+10 ⊕ rk+12 ⊕ rk+14 ⊕ rk+15 ⊕ rk+17 ⊕ rk+19 ⊕
rk+24 ⊕ rk+27 ⊕ rk+29 ⊕ rk+35 ⊕ rk+39 ⊕ rk+41 ⊕ rk+42 ⊕ rk+43 ⊕ i. (1)

The input bit i is only used during initialization.
To encrypt, selected bits of the LFSR are put through a filter function f .

Exactly which bits of the LFSR are put through f and what f actually is,
was not revealed in [NP07]. Note that the general structure of CRYPTO1 is
very similar to that of the Hitag2. This is a low frequency tag from NXP; the
description of the cipher used in the Hitag2 is available on the Internet6. We
used this to make educated guesses about the details of the initialization of the
cipher (see Section 5.1 below) and about the details of the filter function f (see
Section 5.2 below).

5.1 Initialization

Fig. 5. Initialization Diagram

The LFSR is initialized during the authenti-
cation protocol. As before, we experimented
running several authentication sessions with
varying parameters. As we mention in Sec-
tion 4, if nT ⊕ uid remains constant, then
the encrypted reader nonce also remains con-
stant. This suggests that nT ⊕ uid is first
fed into the LFSR. Moreover, experiments
showed that, if special care is taken with the
6 http://cryptolib.com/ciphers/hitag2/

http://cryptolib.com/ciphers/hitag2/
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feedback bits, it is possible to modify nT ⊕uid and the secret key K in such a way
that the ciphertext after authentication also remains constant. Concretely, we
verified that if nT ⊕uid⊕K⊕‘feedback bits’ remains constant, then the keystream
generated after authentication is constant as well. Here the ‘feedback bits’ are
computed according to g(x). This suggests that the secret key K is the initial
state of the LFSR. This also suggests that the keystream feedback loop from
the output back to the LFSR present in the Hitag2 cipher is not present on
CRYPTO1, which greatly simplified the analysis.

Proceeding to the next step in the authentication protocol, the reader nonce
nR is fed into the LFSR as well. Note that earlier bits of nR already affect the
encryption of the later bits of nR. At this point, the initialization is complete
and the input bit of the LFSR is no longer used. Figure 5 shows the initialization
diagram for both reader and tag. The only difference is that the reader generates
nR and then computes and sends nR ⊕ ks1, while the tag receives nR ⊕ ks1 and
then computes nR.

Note that we can, by selecting an appropriate key K, uid, and tag nonce nT ,
totally control the state of the LFSR just before feeding in the reader nonce. In
practice, if we want to observe the behavior of the LFSR starting in state α, we
often set the key to 0, let the Ghost select a uid of 0 and compute which nT we
should let the Ghost send to reach the state α. Now, because nT is only 32 bits
long and α is 48 bits long, this does not seem to allow us to control the leftmost
16 bits of α: they will always be 0. In practice, however, many readers accept
and process tag nonces of arbitrary length. So by sending an appropriate 48 bit
tag nonce nT , we can fully control the state of the LFSR just before the reader
nonce. This will be very useful in the next section, where we describe how we
recovered the filter function f .

5.2 Filter function

The first time the filter function f is used, is when the first bit of the reader
nonce, nR,0, is transmitted. At this point, we fully control the state α of the
LFSR by setting the uid, the key, and the tag nonce. As before, we use the
Ghost to send a uid of 0, use the key 0 on the reader, and use 48 bit tag nonces
to set the LFSR state. So, for values α of our choice, we can observe nR,0 ⊕f(α),
since that is what is being sent by the reader. Since we power up the reader
every time, the generated reader nonce is the same every time. Therefore, even
though we do not know nR,0, it is a constant.

The first task is now to determine which bits of the LFSR are inputs to the
filter function f . For this, we pick a random state α and observe nR,0 ⊕f(α). We
then vary a single bit in α, say the ith, giving state α′, and observe nR,0 ⊕f(α′).
If f(α) �= f(α′), then the ith bit must be input to f . If f(α) = f(α′), then we
can draw no conclusion about the ith bit, but if this happens for many choices
of α, it is likely that the ith bit is not an input to f .

Figure 6 shows an example. The key in the reader (for block 0) is set to 0
and the Ghost sends a uid of 0. On the left hand side, the Ghost sends the
tag nonce 0x6dc413abd0f3 and on the right hand side it sends the tag nonce
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Sender Hex Hex
Reader 26 26 req type A
Ghost 04 00 04 00 answer req
Reader 93 20 93 20 select
Ghost 00 00 00 00 00 00 00 00 00 00 uid,bcc
Reader 93 70 00 00 00 00 00 9c d9 93 70 00 00 00 00 00 9c d9 select(uid)
Ghost 08 b6 dd 08 b6 dd mifare 1k
Reader 60 00 f5 7b 60 00 F5 7B auth(block 0)
Ghost 6d c4 13 ab d0 f3 6d c4 13 ab d0 73 nT

Reader df 19 d5 7a e5 81 ce cb 5e ef 51 1e 5e fb a6 21 nR ⊕ ks1, suc2(nT ) ⊕ ks2

Fig. 6. Nearly equal LFSR states

0x6dc413abd073. This leads, respectively, to LFSR states of 0xb05d53bfdb10
and 0xb05d53bfdb11. These differ only in the rightmost bit, i.e., bit 47. On the
left hand side, the first bit of the encrypted reader nonce is 1 and on the right
hand side it is 0 (recall the byte-swapping convention used in traces). Hence, bit
47 must be an input to the filter function f .

This way, we were able to see that the bits 9, 11, . . . , 45, 47 are input to the
filter function f . Based on the similarity with the Hitag2, we guessed that there
are 5 “first layer circuits” each taking four inputs, respectively, 9, 11, 13, 15 for the
left-most circuit up to 41, 43, 45, 47 for the right-most circuit. The five results
from these circuit are then, we guessed, input into a “second layer circuit”,
producing a keystream bit. (See Figure 8 for the structure of CRYPTO1). Note
that in the Hitag2, all these circuits are “balanced”, in the sense that for half
the possible (16 or 32) inputs they give a 0 and for half the possible inputs they
give a 1.

To verify our guess and to determine f , we again take a random state α of
the LFSR. We then vary 4 (guessed) inputs to a first layer circuit in all 16 ways
possible, giving states α0, α1, . . . α15 and observe r0 ⊕ f(α0), . . . , r0 ⊕ f(α15). If
our guess was correct, we expect these to be 16 zeros, 16 ones, or 8 zeros and 8
ones: either the 16 non-varying inputs are such that the 4 varying inputs do not
influence the keystream bit (in which case we get all zeros or all ones), or we get
a “balanced” result as in the Hitag2. In the first two cases, we try again; in the
latter case, we have found the component (up to a NOT, but that is irrelevant).
Figure 7 shows examples of LFSRs that vary the inputs to a first layer circuit.

It turned out that our guess was correct; there are two different circuits used
in the first layer. Two circuits in the first layer compute fa(x3, x2, x1, x0) repre-
sented by the boolean table 0x26c7 and the other three compute fb(x3, x2, x1, x0)

LFSR \ XX 55 54 51 50 45 44 41 40 15 14 11 10 05 04 01 00
0xb05d53bfdbXX 0 0 0 0 1 1 0 1 1 1 0 1 0 0 1 1
0xfbb57bbc7fXX 1 1 1 1 0 0 1 0 0 0 1 0 1 1 0 0
0xe2fd86e299XX 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Fig. 7. First bit of encrypted reader nonce
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Fig. 8. The CRYPTO1 Cipher

represented by the boolean table 0x0dd3. I.e., from left to right the bits of
0x26c7 are the values of fa(1, 1, 1, 1), fa(1, 1, 1, 0), . . . , fa(0, 0, 0, 0) and similarly
for fb (and fc below). These five output bits are input into the circuit in the
second layer. By trying 32 states that produce all 32 possible outputs for the
first layer, we build a table for the circuits in the second layer. It computes
fc(x4, x3, x2, x1, x0) represented by the boolean table 0x4457c3b3. In this way
we recovered the filter function f . See Figure 8.

6 MIFARE Weaknesses and Exploits

This section describes four design flaws of the mifare Classic. These flaws allow
us to recover the secret key from a genuine mifare reader in two different ways.
In one way, the core of which is described in Section 6.1, we first have to gather
a modest amount of data from the reader. Together with a precomputed table
this can be used to invert the filter function f and then, with an LFSR rollback
technique described in Section 6.2, we can recover the secret key. In the other
way, described in Section 6.3, we can directly invert the filter function f in
under one second on ordinary hardware without the need for any precomputed
tables. The same LFSR rollback technique then also recovers the secret key. In
Section 6.4 we finish with a weakness in the way that parity bits are treated.

6.1 LFSR State Recovery

The tag nonce directly manipulates the internal state of the LFSR. This enables
us to recover the state of the LFSR, given a segment of keystream.

First, we build a table consisting of tuples (lfsr, ks) where lfsr runs over all
LFSR states of the form 0x000WWWWWWWWW and ks are the first 64 bits of keystream
they generate. This one time computation can be performed on a ordinary com-
puter and can be reused for any reader/key. This produces a table of 236 rows.

Now we focus on a specific reader that we want to attack. For each 12 bit
number 0xXXX, we start an authentication session using the same uid. We set the
challenge nonce of the tag to nT = 0x0000XXX0. After the reader answers with
nR ⊕ks1, suc2(nT )⊕ks2 we do not reply. Then most readers send halt⊕ks3. Since
we know suc2(nT ) and halt we can recover ks2, ks3. There is exactly one value for
0xXXX that produces an LFSR state of the form 0xYYYYYYYY000Y after feeding in
nT = 0x0000XXX0. While feeding in the reader nonce nR, the zeros in the LFSR
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are shifted to the left, producing an LFSR state of the form 0x000YZZZZZZZZ.
Since we have all LFSR states of this form in our table, we can recover it by
searching for ks2, ks3.

Typically, only for a single value of 0xXXX do we get a hit in our table, because
the size of the keystream is 64 bits and the size of the LFSR is only 48 bits. In
Section 6.2 we show how we can use the LFSR state that we find in the table,
together with nT and nR ⊕ ks1, to obtain the secret key.

In the above description it is possible to trade off between the size of the
lookup table and the number of authentication sessions needed. In the above
setup, the size of the table is approximately one terabyte and the number of
required authentication sessions is 4096. For instance, by varying 13 instead of
12 bits of the tag nonce we halve the size of the table at the cost of doubling the
number of required sessions.

Note that even if the reader does not respond in case of time out, we can still
use this technique to recover the LFSR state. In that case, for each 0xXXX, we
search only for the corresponding ks2 in the table. Since there are 248−12 entries
in the table, and ks2 is 32 bits long, we get on average 24 matches. Since we are
considering 212 possible values of 0xXXX, we get a total of approximately 216

possible LFSR states. Each of these LFSR states gives us, using Section 6.2, a
candidate key. With a single other partial authentication session, i.e., one up to
and including the answer from the reader, we can then check which of those keys
is the correct one.

6.2 LFSR Rollback

Given the state rkrk+1 . . . rk+47 of the LFSR at a certain time k (and the in-
put bit, if any), one can use the relation (1) to compute the previous state
rk−1rk . . . rk+46.

Now suppose that we somehow learned the state of the LFSR right after the
reader nonce has been fed in, for instance using the approach from the previous
section, and that we have eavesdropped the encrypted reader nonce. Because we
do not know the plaintext reader nonce, we cannot immediately roll back the
LFSR to the state before feeding in the reader nonce. However, the input to the
filter function f does not include the leftmost bit of the LFSR. This weakness
does enable us to recover this state (and the plaintext reader nonce) anyway.

To do so we shift the LFSR to the right; the rightmost bit falls out and we
set the leftmost bit to an arbitrary value r. Then we compute the function f
and we get one bit of keystream that was used to encrypt the last bit nR,31 of
the reader nonce. Note that the leftmost bit of the LFSR is not an input to
the function f , and therefore our choice of r is irrelevant. Using the encrypted
reader nonce we recover nR,31. Computing the feedback of the LFSR we can now
set the bit r to the correct value, i.e., so that the LFSR is in the state prior to
feeding nR,31. Repeating this procedure 31 times more, we recover the state of
the LFSR before the reader nonce was fed in.

Since the tag nonce and uid are sent as plaintext, we also recover the LFSR state
before feeding in nT ⊕ uid (step 4). Note that this LFSR state is the secret key!
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6.3 Odd Inputs to the Filter Function

The inputs to the filter function f are only on odd-numbered places. The fact
that they are so evenly placed can be exploited. Given a part of keystream,
we can generate those relevant bits of the LFSR state that give the even bits
of the keystream and those relevant bits of the LFSR state that give the odd
bits of the keystream separately. By splitting the feedback in two parts as well,
we can combine those even and odd parts efficiently and recover exactly those
states of the LFSR that produce a given keystream. This may be understood as
“inverting” the filter function f .

Let b0b1 . . . bn−1 be n consecutive bits of keystream. For simplicity of the
presentation we assume that n is even; in practice n is either 32 or 64. Our goal
is to recover all states of the LFSR that produce this keystream. To be precise,
we will search for all sequences r̄ = r0r1 . . . r46+n of bits such that

rk ⊕ rk+5 ⊕ rk+9 ⊕ rk+10 ⊕ rk+12 ⊕ rk+14 ⊕ rk+15 ⊕ rk+17

⊕ rk+19 ⊕ rk+24 ⊕ rk+25 ⊕ rk+27 ⊕ rk+29 ⊕ rk+35 ⊕ rk+39 ⊕ rk+41

⊕ rk+42 ⊕ rk+43 ⊕ rk+48 = 0, for all k ∈ {0, . . . , n − 2}, (2)

and such that

f(rk . . . rk+47) = bk, for all k ∈ {0, . . . , n − 1}. (3)

Condition (2) says that r̄ is generated by the LFSR, i.e., that r0r1 . . . r47, r1r2 . . .
r48, . . . are successive states of the LFSR; Condition (3) says that it generates
the required keystream. Since f only depends on 20 bits of the LFSR, we will
overload notation and write f(rk+9, rk+11, . . . , rk+45, rk+47) for f(rk . . . rk+47).
Note that when n is larger than 48, there is typically only one sequence satisfying
(2) and (3), otherwise there are on average 248−n such sequences.

During our attack we build two tables of approximately 219 elements. These
tables contain respectively the even numbered bits and the odd numbered bits
of the LFSR sequences that produce the evenly and oddly numbered bits of the
required keystream.

We proceed as follows. Looking at the first bit of the keystream, b0, we gen-
erate all sequences of 20 bits s0s1 . . . s19 such that f(s0, s1, . . . , s19) = b0. The
structure of f guarantees that there are exactly 219 of these sequences. Note
that the sequences r̄ of the LFSR that we are looking for must have one of these
sequences as its bits r9, r11, . . . , r47.

For each of the entries in the table, we now do the following. We view the
entry as the bits 9, 11, . . . , 47 of the LFSR. We now shift the LFSR two positions
to the left. The feedback bit, which we call s20, that is shifted in second could
be either 0 or 1; not knowing the even numbered bits of the LFSR nor the low
numbered odd ones, we have no information about the feedback. We can check,
however, which of the two possibilities for s20 matches with the keystream, i.e.,
which satisfy f(s1, s2, . . . , s20) = b2. If only a single value of s20 matches, we
extend the entry in our table by s20. If both match, we duplicate the entry,
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Fig. 9. Subsequences s̄ and t̄

extending it once with 0 and once with 1. If neither matches, we delete the
entry. On average, 1/4 of the time we duplicate an entry, 1/4 of the time we
delete an entry, and 1/2 of the time we only extend the entry. Therefore, the
table stays, approximately, of size 219.

We repeat this procedure for the bits b4, b6, . . . , bn−1 of the keystream. This
way we obtain a table of approximately 219 entries s0s1 . . . s19+n/2 with the
property that f(si, si+1, . . . , si+19) = b2i for all i ∈ {0, 1, . . . , n/2}. Consequently,
the sequences r̄ of the LFSR that we are looking for must have one of the entries
of this table as its bits r9, r11, . . . , r47+n.

Similarly, we obtain a table of approximately 219 entries t0t1 . . . t19+n/2 with
the property that f(ti, ti+1, . . . , ti+19) = b2i+1 for all i ∈ {0, 1, . . . , n/2}.

Note that after only 4 extensions of each table, when all entries have length 24,
one could try every entry s0s1 . . . s23 in the first table with every entry t0t1 . . . t23
in the second table to see if s0t0s1 . . . t23 generates the correct keystream. Note
that this already reduces the search complexity from 248 in the brute force case
to (219)2 = 238.

To further reduce the search complexity, we now look at the feedback of the
LFSR. Consider an entry s̄ = s0s1 . . . s19+n/2 of the first table and an entry
t̄ = t0t1 . . . t19+n/2 of the second table. In order that r̄ = s0t0s1 . . . t19+n/2 is
indeed generated by the LFSR, it is necessary (and sufficient) that every 49
consecutive bits satisfy the LFSR relation (2), i.e., the 49th must be the feedback
generated by the previous 48 bits.

So, for every subsequence sisi+1 . . . si+24 of 25 consecutive bits of s̄ we com-
pute its contribution b1,s̄

i = sk ⊕ si+5 ⊕ si+6 ⊕ si+7 ⊕ si+12 ⊕ si+21 ⊕ si+24 of the
LFSR relation and for every subsequence titi+1 . . . ti+23 of 24 consecutive bits
of t̄ we compute b2,t̄

i = ti+2 ⊕ ti+4 ⊕ ti+7 ⊕ ti+8 ⊕ ti+9 ⊕ ti+12 ⊕ ti+13 ⊕ ti+14 ⊕
ti+17 ⊕ ti+19 ⊕ ti+20 ⊕ ti+21. See Figure 9. If s0t0s1 . . . tn/2 is indeed generated
by the LFSR, then

b1,s̄
i = b2,t̄

i for all i ∈ {0, . . . , n/2 − 5}. (4)

Symmetrically, for every subsequence of 24 consecutive bits of s̄ and corre-
sponding 25 consecutive bits of t̄, we compute b̃1,s̄

i = si+2 ⊕ si+4 ⊕ si+7 ⊕
si+8 ⊕ si+9 ⊕ si+12 ⊕ si+13 ⊕ si+14 ⊕ si+17 ⊕ si+19 ⊕ si+20 ⊕ si+21 and b̃2,t̄

i =
ti ⊕ ti+5 ⊕ ti+6 ⊕ ti+7 ⊕ ti+12 ⊕ ti+21 ⊕ ti+24. Also here, if s0t0s1 . . . tn/2 is indeed
generated by the LFSR, then

b̃1,s̄
i = b̃2,t̄ for all i ∈ {0, . . . , n/2 − 5}. (5)
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Fig. 10. Encryption of parity bits

One readily sees that together, conditions (4) and (5) are equivalent to
equation (2).

To efficiently determine the LFSR state sequences that we are looking for, we
sort the first table by the newly computed bits b1,s̄

0 . . . b1,s̄
n/2−5b̃

1,s̄
0 . . . b̃1,s̄

n/2−5, and
the second table by b2,t̄

0 . . . b2,t̄
n/2−5b̃

2,t̄
0 . . . b̃2,t̄

n/2−5.
Since s0t0s1 . . . tn/2 is generated by the LFSR if and only b1,s̄b̃1,s̄ = b2,t̄b̃2,t̄ and

since by construction it generates the required keystream, we do not even have
to search anymore. The complexity now reduces to n loops over two tables of size
approximately 219 and two sortings of these two tables. For completeness sake,
note that from our tables we retrieve r9r10 . . . r46+n. So to obtain the state of the
LFSR at the start of the keystream, we have to roll back the state r9r10 . . . r58
9 steps.

In a variant of this method, applicable if we have sufficiently many bits of
keystream available (64 will do), we only generate one of the two tables. For
each of the approximately 219 entries of the table, the LFSR relation (1) can
then be used to express the ‘missing’ bits as linear combinations (over F2) of the
bits of the entry. We can then check if it produces the required keystream.

This construction has been implemented in two ways. First of all as C code
that recovers states from keystreams. Secondly also as a logical theory that has
been verified in the theorem prover PVS [ORSH95]. The latter involves a logical
formalization of many aspects of the mifare Classic [JW08].

6.4 Parity Bits

Every 8 bits, the communication protocol sends a parity bit. It turns out that the
parity is not computed over the ciphertext, at the lowest level of the protocol,
but over the plaintext. The parity bits themselves are encrypted as well; however,
they are encrypted with the same bit of keystream that is used to encrypt the
next bit. Figure 10 illustrates the mapping of the keystream bits to the plaintext.

In general, this leaks one bit of information about the plaintext for every byte
sent. This can be used to to drastically reduce the search space for tag nonces
in Section 8.

7 Attacking MIFARE

Attack One. Summarizing, an attacker can recover the secret key from a mi-

fare reader as follows.
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First, the attacker generates the table of (lfsr, ks) tuples as described in
Section 6.1. This one terabyte table can be computed in one afternoon on stan-
dard hardware and can be reused.

Next, the attacker initiates 4096 = 212 authentication sessions and computes
ks2, ks3 for each of these sessions as described in Section 4.1. Note that this
only requires access to a reader and not to a tag. As explained in Section 6.1,
it is possible to recover the state of the LFSR prior to feeding in nR. Then, as
explained in Section 6.2, it is also possible to recover the state prior to feeding
in nT ⊕ uid. I.e., the secret key is recovered!

Experiments show that it is typically possible to gather between 5 and 35
partial authentication sessions per second from a mifare reader, depending on
whether or not the reader is online. This means that gathering 4096 sessions
takes between 2 and 14 minutes.

Attack Two. Instead of using the table, we can also use the invertibility of
f described in Section 6.3 to recover the state of the LFSR at the end of the
authentication. This way, we only need a single (partial) authentication session.

Note that this attack cannot be stopped by fixing the readers to not continue
communication after communication fails. With the knowledge of just ks2, we
can invert f to find approximately 65536 candidate keys; these can be checked
against another authentication session.

In practice, a relatively straightforward implementation of this attack takes
less than one second of computation and only about 8 MB of memory on ordinary
hardware to recover the secret key. Moreover, it does not require any kind of
pre-computation, rainbow tables, etc. A highly optimized implementation of the
single table variant consumes virtually no memory and recovers the secret key
within 0.1 second on the same hardware.

8 Multiple-Sector Authentication

Many systems authenticate for more than one sector. Starting with the second
authentication the protocol is slightly different. Since there is already a session
key established, the new authentication command is sent encrypted with this
key. At this stage the secret key K ′ for the new sector is loaded into the LFSR.
The difference is that now the tag nonce nT is sent encrypted with K ′ while it
is fed into the LFSR (resembling the way the reader nonce is fed in). From this
point on the protocol continues exactly as before, i.e., the reader nonce is fed in,
etc.

To clone a card, one typically needs to recover all the information read by
the reader and this usually involves a few sectors. To do so, we first eavesdrop
a single, complete session which contains authentications for multiple sectors.
Once we have recovered the key for the first sector as described in Section 7,
we proceed to the next sector read by the reader. The authentication request
is now encrypted with the previous session key, but this is not a problem: we
just recovered that key, so we can decrypt the authentication request. The issue
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now is that we need the tag nonce nT to mount our attacks and it is encrypted
with the key K ′ which we do not yet know. We can, of course, simply try all 216

possible tag nonces to execute our attack.
Using the parity bits, however, the number of possible tag nonces can be

drastically reduced. The first three parity bits, say p0, p1, p2, of the tag nonce
nT are encrypted with the keystream bits that are also used to encrypt bits n8,
n16, and n24 of nT . That is, from the communication we can observe p0 ⊕ b8,
n8 ⊕ b8, where b8 is the keystream bit that is used to encrypt n8, and similarly
for the other two parity bits. From this we can see whether or not p0, the parity
of the first byte of nT , is equal to n8, the first bit of the second byte of nT .
This information decreases the number of potential nonces by a factor of 2.
The same holds for the other 2 parity bits in nT and for the 7 parity bits in
suc2(nT ) and suc3(nT ). In total, the search space is reduced from 216 nonces to
only 216/210 = 64 nonces.

A not yet well-understood phenomenon allows us to select almost immediately
the correct nonce out of those 64 candidates. The pseudo-random generator of
the tag keeps shifting during the communication in a predictable way. This
enables us the predict the distance d(nT , n′T ) between the tag nonce nT used in
one authentication session and the tag nonce n′T used in the next. Distance here
means the number of times the pseudo-random number generator has to shift
after outputting nT before it outputs n′T . The relation we found experimentally
is d(nT , n′T ) = 8t − 55c − 400, where t is the time between the sending of the
encrypted reader nonce in the first authentication session and the authenticate
command that starts the next session (expressed in bit-periods, the time it takes
to send a single bit, approximately 9.44μs) and c is the number of commands
the reader sends in the first session. However, we do not know precisely why this
relation holds and if it holds under all circumstances. In practice, the correct
nonce is nearly always the one (from the 64 candidates) whose distance to nT is
closest to d(nT , n′T ). Consequently, keys for subsequent sectors are obtained at
the same speed as the key for the first sector.

9 Consequences and Conclusions

We have reverse engineered the security mechanisms of the mifare Classic chip.
We found several vulnerabilities and successfully managed to exploit them, re-
trieving the secret key from a genuine reader. We have presented two very prac-
tical attacks that, to retrieve the secret key, do not require access to a genuine
tag at any point.

In particular, the second attack recovers a secret key from just one or two
authentication attempts with a genuine reader (without access to a genuine tag)
in less than a second on ordinary hardware and without any pre-computation.
Furthermore, an attacker that is capable of eavesdropping the communication
between a tag and a reader can recover all keys used in this communication.
This enables an attacker to decrypt the whole trace and clone the tag.
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What the actual implications are for real life systems deploying the mifare

Classic depends, of course, on the system as a whole: contactless smart cards
are generally not the only security mechanism in place. For instance, public
transport payment systems such as the Oyster card and OV-Chipkaart have
a back-end system recording transactions and attempting to detect fraudulent
activities (such as traveling on a cloned card). Systems like these will now have
to deal with the fact that it turns out to be fairly easy to read and clone cards.
Whether or not the current implementations of these back ends are up to the
task should be the subject to further scrutiny. We would also like to point out
that some potential of the mifare Classic is not being used in practice, viz.,
the possibility to use counters that can only be decremented, and the possibility
to read random sectors for authentication. Whether or not this is sufficient to
salvage the mifare Classic for use in payment systems is the subject of further
research [TN08].

In general, we believe that it is far better to use well-established and well-
reviewed cryptographic primitives and protocols than proprietary ones. As was
already formulated by Auguste Kerckhoffs in 1883, and what is now known as
Kerckhoffs’ Principle, the security of a cryptographic system should not depend
on the secrecy of the system itself, but only on the secrecy of the key [Ker83].
Time and time again it is proven that details of the system will eventually become
public; the previous obscurity then only leads to a less well-vetted system that
is prone to mistakes.
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